
A tutorial for blockcluster R package

Version 4

Parmeet Singh Bhatia*, Serge Iovle� �

August 22, 2024

Contents

1 Introduction 2

2 Package details 2
2.1 cocluster function . 3

2.1.1 The coclusterBinary function . 4
2.1.2 The coclusterCategorical function . 4
2.1.3 The coclusterContinuous function . 4
2.1.4 The coclusterContingency function . 5

2.2 coclusterStrategy function . 5
2.2.1 Understanding various input parameters 7

2.3 Model Parameters . 8
2.3.1 Binary Models . 8
2.3.2 Categorical Models . 8
2.3.3 Continuous Models . 9
2.3.4 Contingency Models . 9

2.4 Example using simulated Binary dataset . 9

3 Examples with real datasets 10
3.1 Image segmentation . 10
3.2 Document clustering . 11

4 Remarks 12

A Examples 13
A.1 Example with simulated binary dataset . 13
A.2 Example with simulated categorical dataset . 14
A.3 Examples with simulated Poisson dataset . 15
A.4 Examples with simulated Gaussian dataset . 16

Abstract

blockcluster is a newly developed R package for co-clustering of binary, contingency,
continuous and categorical data. The core library is written in C++ and blockcluster

API acts as a bridge between C++ core library and R statistical computing environment.

*Siemens, bhatia.parmeet@gmail.com
�INRIA-Lille, serge.iovle�@inria.fr

1

The package is based on recently proposed [4], [2], [3] latent block models for simultaneous
clustering of rows and columns. This tutorial is based on the package version 4.

1 Introduction

Cluster analysis is an important tool in a variety of scienti�c areas such as pattern recognition,
information retrieval, micro-array, data mining, and so forth. Although many clustering pro-
cedures such as hierarchical clustering, k-means or self-organizing maps, aim to construct an
optimal partition of objects or, sometimes, of variables, there are other methods, called block
clustering methods, which consider simultaneously the two sets and organize the data into ho-
mogeneous blocks. Let x denotes a n × d data matrix de�ned by x = {(xij); i ∈ I and j ∈ J},
where I is a set of n objects (rows, observations, cases etc) and J is a set of d variables (columns,
attributes etc). The basic idea of these methods consists in making permutations of objects and
variables in order to draw a correspondence structure on I×J . For illustration, consider Figure 1

Figure 1: Binary data set (a), data reorganized by a partition on I (b), by partitions on I and
J simultaneously (c) and summary matrix (d).

where a binary data set de�ned on set of n = 10 individuals I = A,B,C,D,E, F,G,H, I, J and
set of d = 7 binary variables J = 1, 2, 3, 4, 5, 6, 7 is re-organized into a set of 3 × 3 clusters by
permuting the rows and columns.

Owing to ever increasing importance of Co-clustering in variety of scienti�c areas, we have
recently developed a R package for the same called blockcluster. The R package block-
cluster allows to estimate the parameters of the co-clustering models [[4]] for binary, con-
tingency, continuous and categorical data. This package is unique from the point of view of
generative models it implements (latent block models), the used algorithms (BEM, BCEM)
and, apart from that, special attention has been given to design the library for handling
very huge data sets in reasonable time. The R package is already available on CRAN at
https://CRAN.R-project.org/package=blockcluster.

This aim of this tutorial is to elaborate the usage of R package blockcluster and to fa-
miliarize its users with its various capabilities. The rest of the article is organized as follows.
Section 2 gives various details of the package as well as demonstrate it's usage on simulated
binary data-set. Section 3 provides two examples with real data-sets.

2 Package details

This package contains two main functions namely cocluster and coclusterStrategy to per-
form co-clustering and to set various input parameters respectively. The convenient functions

2

https://CRAN.R-project.org/package=blockcluster

coclusterBinary, coclusterCategorical, coclusterContingency and coclusterContinu-
ous are specialized versions of the cocluster function. The package also contains two helper
functions namely summary and plot to get the summary of estimated model parameters and
to plot the results respectively. We will �rst go through the details of two main functions.
The helper functions are self-explanatory and I will use them in various examples for better
understanding.

2.1 cocluster function

Up to version 3, this is the main function of blockcluster package that performs Co-clustering
for binary, categorical, contingency and continuous data. The prototype of the function is as
follows:

cocluster(data , datatype , semisupervised = FALSE

, rowlabels = numeric (0), collabels = numeric (0)

, model = NULL , nbcocluster , strategy = coclusterStrategy ())

The various inputs of cocluster functions are as follows:

� data: Input data as matrix (or list containing data matrix, numeric vector for row e�ects
and numeric vector column e�ects in case of contingency data with known row and column
e�ects.)

� datatype: This is the type of data which can be "binary", "categorical", "continuous" or
"contingency".

� semisupervised: Boolean value specifying whether to perform semi-supervised co-clustering
or not. Make sure to provide row and/or column labels if speci�ed value is true. The de-
fault value is false.

� rowlabels: Vector specifying the class of rows. The class number starts from zero. Provide
-1 for unknown row class.

� collabels: Vector specifying the class of columns. The class number starts from zero.
Provide -1 for unknown column class.

� model: This is the name of model. The various models that are available in package are
given in tables 1, 2, 3 and 4.

� nbcocluster: Integer vector specifying the number of row and column clusters respec-
tively.

� strategy: This input can be used to control various input parameters. It can be created
using the function coclusterStrategy as explained in Section 2.2.

� nbCore: This input can be used to control the number of threads to use. Put 0 for all
availables cores. Default is 1.

The only mandatory inputs to the function cocluster are data, datatype and nbcocluster.
The default model for each data-type is the most general model with free row and column
proportions and unequal dispersion/variance for each block. Furthermore we have default set
of input parameters which works well in most cases which are explained in further details in
Section 2.2. The package also comes with OpenMP support (If supported by your Operating
system and R). You need to set the number of threads in you environment (nbCore).

3

2.1.1 The coclusterBinary function

The coclusterBinary function is a specialization of the cocluster function for binary data.
The prototype of the function is as follows:

cocluster for binary data

coclusterBinary(data , semisupervised = FALSE

, rowlabels = numeric (0), collabels = numeric (0)

, model = NULL , nbcocluster , strategy = coclusterStrategy ()

, a=1, b=1, nbCore =1)

This function has two additional parameters a and b corresponding to the bayesian form of the
likelihood function. The default value correspond to the case "no prior". The available binary
models are given in the table 1.

Model Datatype Proportions Dispersion/Variance

pik_rhol_epsilonkl binary unequal unequal
pik_rhol_epsilon binary unequal equal
pi_rho_epsilonkl binary equal unequal
pi_rho_epsilon binary equal equal

Table 1: Binary models available in package blockcluster.

2.1.2 The coclusterCategorical function

The coclusterCategorical function is a specialization of the cocluster function for categorical
data. The prototype of the function is as follows:

cocluster for categorical data

coclusterCategorical(data , semisupervised = FALSE

, rowlabels = numeric (0), collabels = numeric (0)

, model = NULL , nbcocluster , strategy = coclusterStrategy ()

, a=1, b=1, nbCore =1)

This function has two additional parameters a and b corresponding to the bayesian form of
the likelihood function. The default value correspond to the case "no prior". The availables
categorical models are given in the table 2.

Model Datatype Proportions Dispersion/Variance

pik_rhol_multi categorical unequal N.A
pi_rho_multi categorical equal N.A

Table 2: Categorical models available in package blockcluster.

2.1.3 The coclusterContinuous function

The coclusterContinuous function is a specialization of the cocluster function for continuous
data. The prototype of the function is as follows:

cocluster for continuous data (Gaussian models)

coclusterContinuous(data , semisupervised = FALSE

, rowlabels = numeric (0), collabels = numeric (0)

4

, model = NULL , nbcocluster , strategy = coclusterStrategy (), nbCore =1)

The availables continuous models are given in the table 3.

Model Datatype Proportions Dispersion/Variance

pik_rhol_sigma2kl continuous unequal unequal
pik_rhol_sigma 2 continuous unequal equal
pi_rho_sigma2kl continuous equal unequal
pi_rho_sigma2 continuous equal equal

Table 3: Continuous models available in package blockcluster.

2.1.4 The coclusterContingency function

The coclusterContingency function is a specialization of the cocluster function for contin-
gency data. The prototype of the function is as follows:

cocluster for contingency data (Poisson models)

coclusterContingency(data , semisupervised = FALSE

, rowlabels = numeric (0), collabels = numeric (0)

, model = NULL , nbcocluster , strategy = coclusterStrategy ())

The availables contingency models are given in the table 4.

Model Datatype Proportions Dispersion/Variance

pik_rhol_unknown contingency unequal N.A
pi_rho_unknown contingency equal N.A
pik_rhol_known contingency unequal N.A
pi_rho_known contingency equal N.A

Table 4: Contingency models available in package blockcluster.

2.2 coclusterStrategy function

In the package blockcluster, we have a function called coclusterStrategy which can be used
to set the values of various input parameters. The prototype of the function is as follows:

coclusterStrategy(algo = "BEM", initmethod = "emInitStep"

, stopcriteria = "Parameter", semisupervised = FALSE

, nbinitmax = 100, nbiterationsxem = 50, nbiterationsXEM = 500

, nbinititerations = 10, initepsilon = 0.01

, nbiterations_int = 5, epsilon_int = 0.01

, epsilonxem = 1e-04, epsilonXEM = 1e-10, nbtry = 2

, nbxem = 5)

In the following example, we call the function coclusterStrategy without any arguments
and then we called the overloaded function summary to see default values of various input
parameters.

> defaultstrategy <- coclusterStrategy()

> summary(defaultstrategy)

5

**

Algorithm: BEM

Initialization method(There is no default value): emInitStep

Stopping Criteria: Parameter

Various Iterations

Maximal number of initialization to try: 100

Number of global iterations while running initialization: 10

Number of iterations for internal E-step: 5

Number of EM iterations used during xem: 50

Number of EM iterations used during XEM: 500

Number of xem iterations: 5

Number of tries: 2

Various epsilons

Tolerance value used while initialization: 0.01

Tolerance value for internal E-step: 0.01

Tolerance value used during xem: 1e-04

Tolerance value used during XEM: 1e-10

**

To set these input parameters, we have to pass appropriate arguments to function coclus-
terStrategy as shown in example below where we set nbtry, nbxem and algo parameters.

> newstrategy <- coclusterStrategy(nbtry=5, nbxem=10, algo='BCEM')

The newstrategy object can then be passed to function cocluster to perform Co-clustering
using the newly set input parameters. The various input arguments for the function cocluster-
Strategy are as follows:

� algo: The valid values for this parameter are "BEM" (Default), "BCEM", "BSEM" and
"BGibbs" (only for Binary model) which are respectively Block EM, Block Classi�cation
EM, Block Stochastic EM algorithms and Gibbs sampling.

� stopcriteria: It speci�es the stopping criteria. It can be based on either relative change
in parameters value (preferred) or relative change in log-likelihood. Valid criterion values
are "Parameter" and "Likelihood". Default criteria is "Parameter".

� initmethod: Method to initialize model parameters. The valid values are "cemInitStep",
"emInitStep" and "randomInit".

� nbinititerations: Number of Global iterations used in initialization step. Default value
is 10.

� initepsilon: Tolerance value used inside initialization. Default value is 1e-2.

� nbiterations_int: Number of iterations for internal E step. Default value is 5.

� epsilon_int: Tolerance value for relative change in Parameter/likelihood for internal
E-step. Default value is 1e-2.

6

� nbtry: Number of tries (XEM steps). Default value is 2.

� nbxem: Number of xem steps. Default value is 5.

� nbiterationsxem: Number of EM iterations used during xem step. Default value is 50.

� nbiterationsXEM: Number of EM iterations used during XEM step. Default value is
500.

� epsilonxem: Tolerance value used during xem step. Default value is 1e-4.

� epsilonXEM: Tolerance value used during XEM step. Default value is 1e-10.

To understand many of the above input parameters, we need to have some basic idea about
the algorithms and the way they run inside the package blockcluster, which is why there is a
separate dedicated section 2.2.1 for the same.

2.2.1 Understanding various input parameters

You might be wondering why there are so many types of iterations and tolerances inside the
package. Well, to get some basic understanding about various input parameters, it is important
to know a bit about the algorithms. We will not go through full �edged theory of these algorithms
here but will provide enough details to make you understand the meaning of all the input
parameters. From now on everything will be explained using BEM but it is applicable in same
way to BCEM as well as to BSEM/BGibbs algorithm. The BEM algorithm can be de�ned as
follows in laymen language.

1. Run EM algorithm on rows.

2. Run EM algorithm on columns.

3. Iterate between above two steps until convergence.

The following strategy is employed to run various algorithms.

1. Run the BEM Algorithm for 'nbxem' number of times (with high tolerance and low
number of iterations) and keep the best model parameters (based on likelihood) among
these runs. We call this step 'xem' step.

2. Starting with the best model parameters, run the algorithm again but this time with a low
value of epsilon (low tolerance) and a high number of iterations. We call this step 'XEM'
step.

3. Repeat above two steps for 'nbtry' number of times and keep the best model estimation.

With this background, the various input parameters are explained as follows.

� nbxem, nbtry: As explained above these numbers represents the number of time we run
'xem' step and 'xem'+'XEM' step respectively. The tuning of the values of 'nbxem'
and 'nbtry' need to be done intuitively, and could have a substantial e�ect on �nal
results. A good way to set these values is to run co-clustering few number of times and
check if �nal log-likelihood is stable. If not, one may need to increase these values. In
practice, it is better to increment 'nbxem' as it could lead to better (stable) results without
compromising too much the running time.

7

� nbiterationsxem, nbiterationsXEM: These are number of iterations for BEM algo-
rithm i.e the number of times we run EM on rows and EM on columns. As the name
suggests, they are respectively for 'xem' and 'XEM' steps.

� nbiterations_int: This is the number of iterations for EM algorithm on rows/columns.

� epsilonxem, epsilonXEM: These are tolerance values for BEM algorithm during 'xem'
and 'XEM' step respectively.

� epsilon_int: This is the tolerance value for EM algorithm on rows/columns.

� initepsilon, nbinititerations: These are the tolerance value and number of iterations
respectively used during initialization of model parameters.

2.3 Model Parameters

When summary function is called on the output cocluster fuction, it gives the estimated
values of various model parameters. The parameters that are common among all the models are
row and column mixing proportions. The model parameter for various data-types are as follows.

2.3.1 Binary Models

The parameters α of the underlying distribution of a binary data set is given by the matrix
p = (pkℓ) where pkℓ ∈]0, 1[∀ k = 1, . . . , g and ℓ = 1, . . . ,m and the probability distribution
fkℓ(xij ;p) = f(xij ; pkℓ) is the Bernoulli distribution

f(xij ; pkℓ) = (pkℓ)
xij (1− pkℓ)

1−xij .

we re-parameterize the model density as follows:

fkℓ(xij ;α) = (εkj)
|xij−akℓ|(1− εkj)

1−|xij−akℓ|

where {
akℓ = 0, εkℓ = pkℓ if pkℓ < 0.5
akℓ = 1, εkℓ = 1− pkℓ if pkℓ > 0.5.

Hence the parameters pkℓ of the Bernoulli mixture model are replaced by the following
parameters:

� The binary value akℓ, which acts as the center of the block k, ℓ and which gives, for each
block, the most frequent binary value,

� The value εkℓ belonging to the set]0, 1/2[that characterizes the dispersion of the block
k, ℓ and which is, for each block, represents the probability of having a di�erent value than
the center.

2.3.2 Categorical Models

The idea behind categorical models is simple extension of binary models for more than 2 modal-
ities. Hence instead of Bernoulli distribution, we used Multinomial (categorical) distribution.
Hence the model parameters for each block k, l are αkℓ = (αh

kℓ)h=1,..r and
∑

hα
h
kℓ = 1 where r

is the number of modalities.

8

2.3.3 Continuous Models

In this case, the continuous data is modeled using unidimensional normal distribution. Hence
the density for each block is given by:

fkℓ(xij ;α) =
1√
2πσ2

kℓ

exp−{ 1

2σ2
kℓ

(xij − µkℓ)
2}

The parameters of the model are α = (α11, . . . ,αgm) where αkℓ = (µkℓ, σ
2
kℓ) i.e the mean and

variance of block k, l.

2.3.4 Contingency Models

In this case, it is assumed that for each block k, ℓ, the values xij are distributed according to
Poisson distribution P(µiνjγkℓ) where the Poisson parameter is split into µi and νj the e�ects
of the row i and the column j respectively and γkℓ the e�ect of the block kℓ. Then, we have

fkℓ(xij ;α) =
e−µiνjγkℓ(µiνjγkℓ)

xij

xij !

where α = (µ,ν,γ) with µ = (µ1, . . . , µn), ν = (ν1, . . . , νd) and γ = (γ11, . . . , γgm). The
row and column e�ects are either provided by the user for models pik_rhol_known and
pi_rho_known or estimated by the package itself for models pik_rhol_unknown and
pi_rho_unknown.

2.4 Example using simulated Binary dataset

The various parameters used to simulate this binary data-set are given in Table 5. The class
mean and dispersion are respectively represented by a and ϵ whereas π and ρ represents row
and column proportions respectively. The data consist of 1000 rows (samples) and 100 columns
(variables) with two clusters on rows and three clusters on columns. The following R com-
mands shows how to load the library, process the data and visualize/summarize results using
blockcluster.

a, ϵ
0, 0.1 0, 0.3 1, 0.1
1, 0.3 1, 0.2 0, 0.1

π .6 .4

ρ .3 .3 .4

Table 5: Parameters for simulation of binary data.

> library(blockcluster)

> data("binarydata")

> out<-coclusterBinary(binarydata, nbcocluster=c(2,3))

Co-Clustering successfully terminated!

> summary(out)

**

Model Family : Bernoulli Latent block model

Model Name : pik_rhol_epsilonkl

Co-Clustering Type : Unsupervised

9

ICL value: -45557.07

Model Parameters..

Class Mean:

[,1] [,2] [,3]

[1,] TRUE FALSE FALSE

[2,] FALSE TRUE FALSE

Class Dispersion:

[,1] [,2] [,3]

[1,] 0.2003679 0.1006314 0.30176927

[2,] 0.3022391 0.1011803 0.09798014

Row proportions: 0.382 0.618

Column proportions: 0.37 0.34 0.29

Pseudo-likelihood: -45520.43

hyperparam: 1 1

**

Note that you also get the explicit Integrated Complete Likelihood (ICL) value in case of
binary and categorical models, and asymptotic value otherwise. This value can be used for
model selection. The following R command is used to plot the original and co-clustered data
(Figure 2(a)) with default value of asp which is 0 (FALSE). When asp is FALSE, R graphics will
optimize the output �gure for the display, hence the original aspect ratio may not be conserved.
To conserve the original aspect ratio, set the value of asp as 1 or TRUE.

> plot(out, asp = 0)

To Plot various block distributions (Figure 2(b)), the following R command is used with
type argument of overloaded plot function set to 'distribution' (type is 'cocluster' by default
which plots the original and Co-clustered data as shown in (Figure 2(a))).

> plot(out, type = 'distribution')

3 Examples with real datasets

This section demonstrates the applicability of package on real data. Two examples are used:
one for Image segmentation and other for document (co-)clustering.

3.1 Image segmentation

Automatic image segmentation is an important technique and have numerous application espe-
cially in �elds of Medical imaging. Here I present an interesting application of co-clustering (as
pre-processing step) for segmenting object(s) in image. I assume that the object pixels follows
Gaussian distribution. Hence I run the blockcluster package with Gaussian Family model
pik_rhol_sigma2kl on image shown in Figure 3. It can be clearly seen that the image got
nicely segmented into snake and insect in two di�erent blocks.

10

(a) (b)

Figure 2: Original and co-clustered binary data (a), and distributions for each block along with
various mixture densities (b).

Figure 3: Original and co-clustered (segmented) image.

3.2 Document clustering

Document clustering is yet another data mining technique where co-clustering seems to be very
useful. Here we run our package on one of the datasets being used in [1] which is publicly
available at ftp://ftp.cs.cornell.edu/pub/smart. We mix Medline (1033 medical abstracts)
and Cran�eld (1398 aeronautical abstracts) making a total of 2431 documents. Furthermore, we
used all the words (excluding stop words) as features making a total of 9275 unique words. The
data matrix consist of words on the rows and documents on the columns with each entry giving
the term frequency, that is the number of occurrences of corresponding word in corresponding
document. I assume that the term frequency follows Poisson distribution. Hence we can apply
the model pik_rhol_unknown available in our package for contingency (Poisson Family)
datasets with unknown row and column e�ects. Table 6 shows the confusion matrix and compare

11

ftp://ftp.cs.cornell.edu/pub/smart

our results with classical bipartite spectral graph partitioning algorithm of [[1]] where we have
obtained 100 percent correct classi�cation. Figure 4 depicts the 2 × 2 checkerboard pattern in
the data matrix, hence con�rming the more frequent occurrence of particular set of words in
one document and vice-versa. Please note that the data matrix images are extremely sparse
(data points almost invisible) and have been processed using simple image processing tools for
visualization purpose only.

Medline Cran�eld

Medline 1026 0

Cran�eld 7 1400

(a)

Medline Cran�eld

Medline 1033 0

Cran�eld 0 1398

(b)

Table 6: Confusion Matrix: Results reported in [1] (a), and Results using blockcluster (b).
The di�erence in number of Cran�eld documents is because we made use of the already available
data extracted from the documents and there are two less documents data in the same.

U
n
iq
u
e
W
or
d
s

Documents

(a)

U
n
iq
u
e
W
or
d
s

Documents

(b)

Figure 4: Original data matrix with words on rows and documents on columns (a), and checker-
board pattern in words by documents matrix obtained after performing co-clustering (b).

4 Remarks

This tutorial gives a brief introduction about the blockcluster R package. It demonstrates
the use of package using Binary data-set but the package can be used in similar fashion for
other types of data namely Contingency, Continuous and Categorical. Please note that
this tutorial is based on version 4.

References

[1] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph parti-
tioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD '01, pages 269�274, New York, NY, USA, 2001. ACM.

12

[2] G. Govaert and M. Nadif. Block clustering with bernoulli mixture models: Comparison of
di�erent approaches. Computational Statistics & Data Analysis, 52(6):3233�3245, 2008.

[3] G. Govaert and M. Nadif. Latent block model for contingency table. Communications in

Statistics - Theory and Methods, 39(3):416�425, 2010.

[4] Gérard Govaert and Mohamed Nadif. Clustering with block mixture models. Pattern Recog-

nition, 36(2):463 � 473, 2003.

A Examples

In this appendix, we present the main functions allowing to launch the various implemented
model in blockcluster.

A.1 Example with simulated binary dataset

> data(binarydata)

> out<-coclusterBinary(binarydata,nbcocluster=c(3,2), model="pik_rhol_epsilon")

Co-Clustering successfully terminated!

> summary(out)

**

Model Family : Bernoulli Latent block model

Model Name : pik_rhol_epsilon

Co-Clustering Type : Unsupervised

ICL value: -68491.91

Model Parameters..

Class Mean:

[,1] [,2]

[1,] FALSE FALSE

[2,] FALSE FALSE

[3,] FALSE FALSE

Class Dispersion:

[,1] [,2]

[1,] 0.43505 0.43505

[2,] 0.43505 0.43505

[3,] 0.43505 0.43505

Row proportions: 0.3348475 0.3432517 0.3219008

Column proportions: 0.5548934 0.4451066

Pseudo-likelihood: -68468.63

hyperparam: 1 1

**

> plot(out)

13

A.2 Example with simulated categorical dataset

> data(categoricaldata)

> out<-coclusterCategorical(categoricaldata,nbcocluster=c(3,2))

Co-Clustering successfully terminated!

> summary(out)

**

Model Family : Categorical Latent block model

Model Name : pik_rhol_multi

Co-Clustering Type : Unsupervised

ICL value: -8407.387

Model Parameters..

Class Mean:

**

Probability for category 1 in various blocks

**

[,1] [,2]

[1,] 0.90418873 0.02830674

[2,] 0.21774194 0.02180527

[3,] 0.02828784 0.02705570

Probability for category 2 in various blocks

**

[,1] [,2]

[1,] 0.02214733 0.89603706

[2,] 0.21110057 0.02890467

[3,] 0.02580645 0.02015915

Probability for category 3 in various blocks

**

[,1] [,2]

[1,] 0.02599904 0.02676274

[2,] 0.18880455 0.02129817

[3,] 0.89478908 0.03076923

Probability for category 4 in various blocks

**

[,1] [,2]

[1,] 0.02262879 0.02007205

[2,] 0.18833017 0.03093306

[3,] 0.02779156 0.89602122

Probability for category 5 in various blocks

**

14

[,1] [,2]

[1,] 0.02503611 0.02882141

[2,] 0.19402277 0.89705882

[3,] 0.02332506 0.02599469

Row proportions: 0.335 0.34 0.325

Column proportions: 0.5166667 0.4833333

Pseudo-likelihood: -8401.215

hyperparam: 1 1

**

A.3 Examples with simulated Poisson dataset

> data(contingencydataunknown)

> out<-coclusterContingency(contingencydataunknown, nbcocluster=c(2,3))

Co-Clustering successfully terminated!

> summary(out)

**

Model Family : Poisson Latent block model

Model Name : pik_rhol_unknown

Co-Clustering Type : Unsupervised

ICL value: 1297968

Model Parameters..

Class Gamma:

[,1] [,2] [,3]

[1,] 12.855247 4.490885 12.591007

[2,] 7.154158 15.535055 7.475966

Row proportions: 0.516 0.484

Column proportions: 0.2916293 0.3683707 0.34

Pseudo-likelihood: 1298010

**

Contingency models using known row/column e�ects

> data(contingencydataunknown)

> mui= rep(1,nrow(contingencydataunknown))

> nuj= rep(1,ncol(contingencydataunknown))

> out<-coclusterContingency(list(contingencydataunknown, mui, nuj)

+ , nbcocluster=c(2,3), model="pik_rhol_known")

Co-Clustering successfully terminated!

> summary(out)

15

**

Model Family : Poisson Latent block model

Model Name : pik_rhol_known

Co-Clustering Type : Unsupervised

ICL value: 2386909

Model Parameters..

Class Gamma:

[,1] [,2] [,3]

[1,] 12.610775 12.956863 4.490885

[2,] 7.405969 7.088508 15.535055

Row proportions: 0.484 0.516

Column proportions: 0.3686444 0.2913556 0.34

Pseudo-likelihood: 2386952

**

A.4 Examples with simulated Gaussian dataset

> data(gaussiandata)

> out<-coclusterContinuous(gaussiandata,nbcocluster=c(2,3))

Co-Clustering successfully terminated!

> summary(out)

**

Model Family : Gaussian Latent block model

Model Name : pik_rhol_sigma2kl

Co-Clustering Type : Unsupervised

ICL value: -184764.6

Model Parameters..

Class Mean:

[,1] [,2] [,3]

[1,] -9.975354 -0.0113171859 9.933649

[2,] 10.031539 0.0008994489 -9.966977

Class Variance:

[,1] [,2] [,3]

[1,] 10.02491 20.79533 9.854595

[2,] 19.79939 10.00552 19.958890

Row proportions: 0.406 0.594

Column proportions: 0.4 0.28 0.32

Pseudo-likelihood: -184687.5

**

Gaussian model using common variance

16

> data(gaussiandata)

> out<-coclusterContinuous(gaussiandata,nbcocluster=c(2,3), model="pik_rhol_sigma2")

Co-Clustering successfully terminated!

> summary(out)

**

Model Family : Gaussian Latent block model

Model Name : pik_rhol_sigma2

Co-Clustering Type : Unsupervised

ICL value: -187663.1

Model Parameters..

Class Mean:

[,1] [,2] [,3]

[1,] 9.933649 -0.0113171859 -9.975354

[2,] -9.966977 0.0008994489 10.031539

Class Variance:

[,1] [,2] [,3]

[1,] 15.43461 15.43461 15.43461

[2,] 15.43461 15.43461 15.43461

Row proportions: 0.406 0.594

Column proportions: 0.32 0.28 0.4

Pseudo-likelihood: -187614.7

**

17

	Introduction
	Package details
	cocluster function
	The coclusterBinary function
	The coclusterCategorical function
	The coclusterContinuous function
	The coclusterContingency function

	coclusterStrategy function
	Understanding various input parameters

	Model Parameters
	Binary Models
	Categorical Models
	Continuous Models
	Contingency Models

	Example using simulated Binary dataset

	Examples with real datasets
	Image segmentation
	Document clustering

	Remarks
	Examples
	Example with simulated binary dataset
	Example with simulated categorical dataset
	Examples with simulated Poisson dataset
	Examples with simulated Gaussian dataset

